Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
EBioMedicine ; 83: 104240, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2004031

ABSTRACT

BACKGROUND: The live-attenuated yellow fever vaccine YF17D holds great promise as alternative viral vector vaccine platform, showcased by our previously presented potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidate YF-S0. Besides protection from SARS-CoV-2, YF-S0 also induced strong yellow fever virus (YFV)-specific immunity, suggestive for full dual activity. A vaccine concomitantly protecting from SARS-CoV-2 and YFV would be of great benefit for those living in YFV-endemic areas with limited access to current SARS-CoV-2 vaccines. However, for broader applicability, pre-existing vector immunity should not impact the potency of such YF17D-vectored vaccines. METHODS: The immunogenicity and efficacy of YF-S0 against YFV and SARS-CoV-2 in the presence of strong pre-existing YFV immunity were evaluated in mouse and hamster challenge models. FINDINGS: Here, we show that a single dose of YF-S0 is sufficient to induce strong humoral and cellular immunity against YFV as well as SARS-CoV-2 in mice and hamsters; resulting in full protection from vigorous YFV challenge in either model; in mice against lethal intracranial YF17D challenge, and in hamsters against viscerotropic infection and liver disease following challenge with highly pathogenic hamster-adapted YFV-Asibi strain. Importantly, strong pre-existing immunity against the YF17D vector did not interfere with subsequent YF-S0 vaccination in mice or hamsters; nor with protection conferred against SARS-CoV-2 strain B1.1.7 (Alpha variant) infection in hamsters. INTERPRETATION: Our findings warrant the development of YF-S0 as dual SARS-CoV-2 and YFV vaccine. Contrary to other viral vaccine platforms, use of YF17D does not suffer from pre-existing vector immunity. FUNDING: Stated in the acknowledgments.


Subject(s)
COVID-19 , Viral Vaccines , Yellow Fever Vaccine , Yellow Fever , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Cricetinae , Humans , Mice , SARS-CoV-2 , Viral Vaccines/genetics , Yellow Fever/prevention & control , Yellow fever virus/genetics
2.
Drug Topics ; 165(11):9-12, 2021.
Article in English | EMBASE | ID: covidwho-1866103
4.
Vaccine X ; 6: 100076, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-776578

ABSTRACT

The first SARS-CoV-2 vaccine(s) will likely be licensed based on neutralizing antibodies in Phase 2 trials, but there are significant concerns about using antibody response in coronavirus infections as a sole metric of protective immunity. Antibody response is often a poor marker of prior coronavirus infection, particularly in mild infections, and is shorter-lived than virus-reactive T-cells; strong antibody response correlates with more severe clinical disease while T-cell response is correlated with less severe disease; and antibody-dependent enhancement of pathology and clinical severity has been described. Indeed, it is unclear whether antibody production is protective or pathogenic in coronavirus infections. Early data with SARS-CoV-2 support these findings. Data from coronavirus infections in animals and humans emphasize the generation of a high-quality T cell response in protective immunity. Yellow Fever and smallpox vaccines are excellent benchmarks for primary immune response to viral vaccination and induce long-lived virus-reactive CD8 T-cells, which are present and measurable within 1-4 months of vaccination. Progress in laboratory markers for SARS-CoV2 has been made with identification of epitopes on CD4 and CD8 T-cells in convalescent blood. These are much less dominated by spike protein than in previous coronavirus infections. Although most vaccine candidates are focusing on spike protein as antigen, natural infection by SARS-CoV-2 induces broad epitope coverage, cross-reactive with other betacoronviruses. It will be important to understand the relation between breadth, functionality and durability of T-cell responses and resulting protective immunity. It would be a public health and general trust-in-medicine nightmare - including a boost to anti-vaccine forces - if immune protection wears off or new disease patterns develop among the immunized. Data correlating clinical outcomes with laboratory markers of cell-mediated immunity, not only with antibody response, after SARS-CoV-2 natural infection and vaccines may prove critically valuable if protective immunity fades or if new patterns of disease emerge.

SELECTION OF CITATIONS
SEARCH DETAIL